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ABSTRACT
Computational neuroscience is a newly emerging field formed by the intersection of electrical engineering, biomedical engineering,
physiology, biophysics, computer science, mathematics and anatomy. The brain is considered to be a computing device and is studied
at three interacting levels - (i) computational theory, (i) algorithms and (iii) implementation. After a brief introduction to the
methodology of computational neuroscience, we demonstrate the methods by modeling the hippocampal place cell phenomenon. The
hippocampus is an area of the brain that has been demonstrated to be involved in spatial cognitive processing. Place cells in the
hippocampus represent spatial locations based on landmarks in their environment. After a detailed review of the hippocampal place

information is not externally supplied.

1. INTRODUCTION

As we approach the twenty-first century, there is real
hope that a fairly clear understanding of how the human
brain works can be achieved in the coming decades. To
make this discovery a reality, there is a developing
consensus that multi-disciplinary skills have to be brought
to bear on the problem. Among the multiple disciplines
involved, electrical engineering, biomedical engineering,
physiology, biophysics, computer science, mathematics
and anatomy have come together to create the emerging
discipline of Computational Neuroscience.

To quote from the article in Science by Sejnowski,
Koch and Churchland M5, “One of the major research
objectives of computational neuroscience is to discover
the algorithms used in the brain”. This is typically
achieved by “studying simplified models of the brain
which can provide a conceptual framework for isolating
the basic computational problems and understanding the
computational constraints that govern the design of the
nervous system”. Physiology and anatomy provide the
experimental data; biophysics and mathematics provide
the analytical tools; and electrical engineering, biomedical
engineering and computer science provide the link
between theory and practice. Successful computational
models are firmly based on available data and they
evolve as new experimental data become available.

In this article, we approach the study of the “place
cell” phenomenon demonstrated by the hippocampal
region of the animal brain from the perspective of
computational neuroscience. This will serve as a case
study where the principles of computational neuroscience
such as model development, interaction between
anatomical data and the quantitative model and the use
of artificial neural networks will be demonstrated.

1.1 Computational Neuroscience - A Brief
Introduction

The scientific activity currently undertaken within the
realm of computational neuroscience can be traced back
at least to the emergence of “Cybernetics” in 1948 5,
The attempts to explicitly incorporate  quantitative
methods in the study of the brain have accelerated from
that time onwards. Despite the fact that the primary
advances in the study of the brain in the intervening
years have been in the areas of electrophysiology,
neurochemistry and molecular biology, quantitative
modeling has seen spurts of growth. Some landmark
events during this time are the development of the formal
neuron %, rise of perceptrons and neural networks 41 fall
of perceptrons %! and re-emergence of neural networks
in the late 80’s. In fact, the enthusiasm about the field
and the anticipation of impending breakthroughs in our
understanding of the brain have prompted the declaration
of the 1990’s as the “Decade of the Brain” in the United

States.

1.2 What is Computational Neuroscience?

Simply stated, it is the study of the brain as a
computing device. One can consider the whole brain or
its subsystems at the neuronal or molecular levels and
ask the following questions - (i) what does this
subsystem compute?, (i) what are the steps in this
computation? and (ii) how is the computation
implemented? Answers to these questions constitute the
subject matter of the computational neuroscience field.
The three questions we have posed correspond to the
levels of analysis proposed by Marr 'l He considers an
information processing device at the computational
theory, algorithm and hardware implementation levels.
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The computational theory level involves identifying the
computational purpose of the subsystem and the
transformations applied on the incoming data to obtain
the final representation within the subsystem. At the
algorithm level, the computational steps required to
perform the transformations are identified. The
implementation level provides the specific details of how
the algorithms are executed within the brain subsystem.
Such a hierarchy has close correspondence to the
organization of topics in digital signal processing.
Consider the following hypothetical example. ~Assume
that there is a subsystem of the brain that computes
power spectral density (PSD). According to our
hierarchy above, the approach will be to identify the
theoretical method of PSD used and how the PSD is
represented, the algorithm used for its calculation and
the hardware implementation. More specifically, given
that the input whose PSD to be calculated is ergodic, we
have the possibility of defining the PSD as the Fourier
Transform of the autocorrelation function (by the Wiener-
Khintchine theorem) or as the appropriate limit of the
expectation of the periodogram. Based on which of the
two definitions of the PSD is used, the algorithm level
may involve the Fast Fourier Transform, autocorrelation
estimation methods and windowing and segmenting of
data in the periodogram calculations. At the
implementation level, similar to the hardware
implementation issues we may have to consider issues
such as the ICs and power supplies available, circuit lay
out and word length effects, we will have to identify the
molecular and synaptic mechanisms and neuronal and
network interconnections that execute the various steps
in the algorithms identified. A little reflection will show
that the three levels of study are not independent. In
the  hypothetical ~example  above, the actual
implementation constraints alone may help us choose
between the autocorrelation method and the periodogram
method as the one actually used by the brain subsystem.
This is also true in identifying the representation scheme
by which the PSD values are “displayed” within our
hypothetical brain subsystem.  This makes clear the
difficulty of a pure top-down approach, where the
computational theory may be entirely valid but has no
merit as a model of brain function.

The possibility that in an attempt to model some
brain subsystems, we may uncover new and useful
computational theories (that may or may not be valid
models of brain function) should be of great interest to
engineers seeking optimal solutions to practical problems.
Thus, while the top-down approach may be sterile from a
computational neuroscience point of view, it can be of
high utility in one or more of the multiple disciplines that
converge to form computational neuroscience. After all,
even if airplanes do not flap their wings like birds (and
hence they are unrealistic neurobiological models of bird
flight), they provide a perfectly adequate means of flying
most of the time!

The brief outline of the issues in computational
neuroscience given above should not be taken to imply
that there is complete convergence of opinions regarding

terminology, philosophical basis, methodology and other
issues. In fact, the point of view that the computational
metaphor of brain function is similar to the ancient clock-
work metaphor of brain function updated to be current,
has been expressed 5. More view points and discussion
are available in a volume entitled, “Computational
Neuroscience”, edited by Schwartz . In summary, it is
undeniable that there is much enthusiasm about the
possibilities of computational neuroscience and there is
genuine hope that the current multidisciplinary assault on
one of the last scientific frontiers, the working of the
brain, will reveal its secrets.

1.3 Hippocampal Place Cell (HPC) Phenomenon

it has been demonstrated that certain hippocampal
neurons called “place cells” of a freely moving rat
respond preferentially to a location in its already familiar
environment @, These cells act as markers of the rat's
location in its environment. This phenomenon is similar
to obtaining position fixes in navigation problems. To the
uninitiated, the HPC phenomenon can be best explained
by an analogy from automotive engineering.  Suppose
your automobile is equipped with a navigational aid
which contains a small dash-mounted video screen
displaying a city map and your automobile position is
indicated by a flashing spot. The automobile is
analogous to the rat, the video screen to the
hippocampus and the flashing pixel to the place cell (with
the flashing corresponding to the cell “firing”). As we will
see below, this analogy does not carry through for
representational and other details but is quite suggestive
of the phenomenon.

O’Keefe and his collaborators 29 32 2031 proposed the
theory of “hippocampal place cells”. O’Keefe defined the
place cell as a cell whose firing rate or pattern of activity
varies as a function of the animal’s location in an
environment by connecting together several multisensory
inputs, each of which can be perceived when the animal
is in a particular location ®3.  Experiments such as the
T-maze with distal visual cues in which a rat was
allowed to roam ! revealed that place cells in the CA1
area fired with increasing frequency when the rat was at
specific locations 9. Variations of the shape of the
maze, rewards and visual cues also produced similar
increases in the firing frequency of complex spike cells
@2 Further examples of such studies, without being
exhaustive, are the radial maze experiments  of
McNaughton et al? in which they found additional
correlations to direction and those of Breese et al
where they found that the significance of a location has
an important bearing on place cell firing along with the
work of Muller and Kubie®® where they speculated about
the existence of a relationship to the kinematic aspects
of animal motion. Best?¥ summarizes previous work to
conclude that spatial cognitive processing occurs in the
hippocampus and that the hippocampal place cells
provide a sufficient substrate to serve as a spatial
cognitive map.

To arrive at the essence of the place cell
phenomenon, exﬁeriments where information  from
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experimental enclosure, proximal cues, rewards and such
were designed to be negligible were performed by Muller
et al.®?’l Using careful experimental and data analysis
methods, they showed that place cell firing is location-
specific rather than behavior-specific?®. As suggested by
Nadel?®, a hierarchy of more and more complex
information can be built up onto location-specific
information so as to include the effects of rewards at
certain locations, motion between locations?%42, temporal
discontiguity ~between locations® and other such
correlates. It is to be noted that there are competing
theories of hippocampal place cell function such as
working  memory®,  temporary memory*, memory
indexing®® and declarative memory*®), among others.
Critically analyzing the range of articles commented on
by Nadel®®, it appears that the weight of evidence is
on the side of the theory which considers the
complex spike cells in the hippocampus acting as an
intermediate-term storage for the representation of
location-related information.

Various studies have shown that the location-related
information that is represented in the hippocampus is
derived from distal cues in the environment. Considering
the dependence on cues fo:r information, Muller and
Kubiel®® have shown that in most cases, (a) rotation of
cues causes an equal rotation of the place field, (b) cue
size changes leaves the place field relatively unaffected,
(c) increase of enclosure size increases the size of the
place field and the appearance of a new place field and
(d) change of enclosure shape causes an unpredictable
shift of the place field, indicating that the information
stored in the place cell is derived from distal cues.

In considering the various representational structures
that are possible, the following experimental observations
are significant. It has been reported that the notion of
neighbourhood is not observed in the place cell field and
the environment, i.e., two nearby place cells do not have
nearby place fields in the experimental spacel® or that
the representation is "non-topographic”. This is hard to
explain if a tacit assumption is made that the flat
experimental surface will be mapped onto a flat sheet of
complex spike cells that is curved into the shape of a
"C" in the hippocampus. The geometric property®®! that is
not considered in this type of analysis is that when the
flat experimental surface is represented by feature-based
cues, its representation in the hippocampus is no longer
flat and, depending on the non-linearity of the mapping,
the neighorhoods are no longer conserved. Another
observation that has a significant bearing on the
structure of the representation in the hippocampus is that
the same place cell often represents more than one
place field(?l. The proposed representation must have the
capability to account for such multiplicity without
compromising accuracy of representation. In all of place
cell studies, the number of primary features or functions
derived from them is small, less than 3 or 4. The
difficulty with representing any more features in a
3-dimensional  physical  brain  (or  4-dimensional,
considering time as the 4th dimensiond is obvious.
Nevertheless, this is an artificial constraint and many
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more than 3 or 4 feature functions can be relevant in a
redundant and hence fault-tolerant representation of the
environment. ~ The  "neighborhood"  problem, the
"multiplicity" problem and the desirability of representing
more than three features prompt our development of a
non-orthogonal representation system. If the “Cartesian"
system where axes are orthogonal is discarded, we can
consider systems where the axes are concentric circles
or radial lines or parallel lines, to name a few
possibilities.  The  lamellar  architecture  of  the
hippocampus suggests a parallel co-ordinate system of
representation.

The nexi important step in modeling the place cell
phenomenon is the identification of cue-derived features.
From the place cell experimental data available so far,
the determination of the precise information that is
derived from the cues has been difficult. It has been
shown that one of the simplest features, the radial
distance to each cue, is probably not the cue-derived
feature that is stored?’. Speculations about features
range from primary features such as angles between
cuest®®! and the retinal area of the cue image® to
functions of primary features such as distance to and
angle between a suitably defined allocentric co-ordinate
system based on the cues® and ‘“aggregate
predictions"*2. Turning our attention to the development
of representation during the exploratory phase, there is a
large body of work which implicates the mechanisms of
Long Term Potentiation (LTP) or Long Term
Enhancement (LTE) in the increase in firing rates of the
hippocampal pyramidal cells!"#. |t has been suggested
that the LTP or LTE mechanism will permit intermediate-
term (several weeks) activation of cells that have highly
convergent inputs??. This is an adequate mechanism for
the development of representation in the hippocampus
during exploration.

From a computational/theoretical point of view,
several proposals have been put forward to explain the
place cell phenomenon. Zipser™d considered it to be a
pattern recognition problem and developed a 2-stage
neural network to model the system. Some of the
drawbacks of this model which stem mainly from -the
inability to properly explain the cue removal effects are
discussed by Muller and Kubie®®. A neural network
approach® has been recently published to model
classical conditioning effects using Grossberg's theory.
McNaughton?¥ proposed another neural network for the
place cell phenomenon using a matrix-associator model.
This associator codes the local view and a transition
matrix corresponding to the movement to be made is
computed. O'Keefel®>2¢l proposes a computational theory
where certain parameters based on the cues are
calculated to obtain an allocentric co-ordinate system and
features based on the allocentric system are derived.
Recently, a neural network simulation which reproduced
the place cell activity remarkably well has been
reported®’l. The feature common to all these models is
that they provide a “global" model for the hippocampal
activity. As a first step, such an approach is appropriate
except that specific feature transformation properties,
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Figure 1 : Experimental surface with cue locations and
grid centers marked. x, = 1; x, =y, = 0.5.
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Figure 2 : Neural network with cue distance as inputs
and place cells as outputs.

representational details and directly testable hypotheses
are not considered at this global modeling level.

To summarize, we view the complex spike cells in
the hippocampus as an intermediate-term storage for the
representation of location-related information. In the
sequelae, we present both a global neural network model
and a neurobiologically-plausible computational model.

1.4 HPC Phenomenon - Artificial Neural Network

Model

Artificial neural network (ANN) models are important
tools in the development of computational models.
Simulation of input-output relationships of large groups of
neurons using ANNs aid us in understanding the global
functions and in some cases, display correspondences to
the underlying neural structures 4. In this spirit, we
attempt to simulate the HPC phenomenon using ANNs.

4

In our simulation of the place cell phenomenon, we
consider the mapping of locations in the experimental
environment (where the rat is free to roam) into the firing
of individual neurons. Our output feature is not firing
frequency but simply the firing state (or ON/OFF state) of
the neuron. Nevertheless, this establishes the
connection between a physical location and a neuron,
which is the hallmark of the place cell phenomenon.
Such a mapping can be accomplished with a multilayer
perceptron artificial neural network.

The multilayer perceptron using the backpropagation
learning rule is so widely known that no details of the
method need be given [ Our perceptrons have
sigmoidal non-linearities and the thresholds were kept
fixed. In addition to the input and output layers of
processing elements, our network has one hidden layer
of processing elements. In our simulation, the rat's
location is represented by any point on the 2-dimensional
space within the boundary (called “experimental surface”)
shown in figure 1. The x-y co-ordinate system to identify
any point is shown as well as the cues on the periphery
and their x-y co-ordinates as Cue i (x, y). Since there
are infinite number of points (locations) within the
experimental surface and only finite number of place
cells, we discretize the surface and make the number of
locations that the rat can visit finite. To keep the neural
network learning process tractable, we take the rather
extreme case where there are only four locations that the
rat can occupy on the surface (shown as 1, 2, 3 and 4
in figure 1). These are the centers of the four grids that
the experimental surface was discretized into. In our
simulations, there will be only four place cells which
corresponds to grid centers, 1 to 4.

As we have seen earlier, there is a significant
amount of evidence that the animal uses information
derived from the cues to locate itself in space. We
have decided, for this preliminary study, to use the most
obvious feature based on cues, the distances of the rat
to the 3 cues. Therefore, any point, P can be defined
as a vector with 3 elements in the cue-co-ordinate
system, ie., P = (r,, r,, r,), where r, the distance to Cue ,
is a real, non-negative number. As we have mentioned
earlier, there are four place cells corresponding to the
four grid centers. Ideally, these neurons fire only when
the rat is at one of the four grid centers. The firing is
indicated by the neuron outputs changing states from a
“0" to a “1” and therefore, they are binary quantities.
The place cell neurons, P’s, can be considered as
“labeled lines” indicating grid occupancy. In other words,
when the rat is at the center of grid 3, only the place
cell 3 will be in the “1” state while the others will be in
the “0” state (i.e., P, =1, P, =P, =P, = 0).

The multilayer perceptron we used has 3 inputs
corresponding to r, r, and r, and four outputs
corresponding to place cells, P,, P,, P, and P,. This is
shown in figure 2. Our neural network has one hidden
layer with seven nodes. A certain amount of
experimentation was necessary to find these parameters.
During training, the permissible locations are only the
grid centers and therefore the training set contained four
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input-output pairs.  This training set was repeatedly
presented to the neural network and the mean absolute
error between the observed and desired P’s monitored.
The training was stopped when this value was less than
102 This happened, on average, after approximately
24,000 iterations of the training set.

The trained neural network was tested by placing
the test rat at grid centers initially. As can be expected
from the low mean absolute error of 102, the agreement
was quite good. For example, if the test rat is at the grid
3 center, the .output vector, (P,, P, P, P,) should be
equai to (0, 0, 1, 0). We obtained (0.0014, 0.01, 0.99,
0.0099), which shows good agreement with the desired
vector. To study the ability of the network to generalize
from the specific examples used for training, we tested
the grid identification ability of our trained network with

unseen positions. For this test, the rat was allowed to
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occupy any of 21 x 21 equally spaced-points on the
same x-y plane as shown in figure 1. Among these 441
points, only the 4 grid centers had been seen before.
The property of the simulation that is being tested would
be the ability to sample the space and then generalize
that information to all points in space. For example, if
the test rat is at location (-0.8, -0.9) in x-y co-ordinates,
i.e,, near the boundary of grid 2 and 3 in grid 3, we
expect the output vector to be (0, 0, 1, 0). When tested,
we obtained (0.001, 0.33, 0.69, 0.0086). The error can
be computed as the mean absolute error between the
desired and actual output vectors. This large error
reflects the uncertainty or difficulty in deciding to which
grid the point (-0.8, -0.9) belongs. The mean absolute
error for all 21 x 21 points on the plane is plotted in
figure 3. Notice that around grid centers, the errors are
very low, whereas near grid boundaries, the errors are
quite high, as was seen in the numerical example above.
In figure 3, the grid closest to cues C1 and C2 is grid 1
(on the far right side). Moving counter-clockwise, we
have grids 2, 3 and 4. The following observations can
be made from this figure: (i) the error is very low at not
only the grid centers, but also for fairly large regions
around them, thus showing the ability to generalize; (ii)
the error is large at the center of the experimental
surface at x-y co-ordinate position (0, -0.5). The
ambiguity as to which of the four grids the point belongs
to is a maximum here ; (iii) the error near internal
boundaries between any two grids is quite large. The
boundary that runs parallel to the x-axis through the
center of the experimental surface has an undulating
profile, the reasons for which are not quite clear at this
point; and (iv) the error profile along the y-axis has a
distinct pattern, viz., the error is high between grids 1
and 2 whereas it is much lower between grids 3 and 4.
Consider the boundary between grids 1 and 2. Relative
to cues C1 =nd C3 (disregarding C2 for the mement),
the points at the boundary between grids 1 and 2 are
symmetric along this line and hence ambiguity exists
between points in the upper and lower halves. Therefore,
the error profile is higher. Near the boundary between
grids 3 and 4, this ambiguity does not exist because
symmetric points are outside the experimental surface.

The feasibility of simulating the place cell
phenomenon has been demonstrated by this study.
Even with a rather arbitrary choice of the cue feature
(distance to the cue), the multilayer perceptron network
is able to abstract the essential features of the
phenomenon and show interesting abilities to generalize.
This model allows us to duplicate various physiological
experiments such as cue removal and study its effect on
the error surface. We have performed simulations [''. 6]
where cue features such as angles between the cues
and features based on an allocentric co-ordinate system
¢l are employed.

2. HPC PHENOMENON - COMPUTATIONAL
MODEL
From a computational neuroscience point of view,
the previous model lacks the wealth of internal details
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necessary to form testable hypotheses that lead to
physiological experiments. In this section, we develop a
model consistent with known hippocampal anatomy and
physiology based on which certain experiments to test
our model are proposed. From the place cell
experimental data available so far, the determination of
the precise information that is derived from the cues has
been difficult. However, the determination of features
derived fram the cues and their representation in the
hippocampus are intricately interconnected. We advance
the hypothesis that location information is represented in
the hippocampus based on a parallel co-ordinate system.

We considered the place cell representation problem
to be basically geometric in nature, where points on the
plane on which the animal roams around are mapped
into a sheet of cells in the hippocampus, considering the
2-dimensional case for the present !'l.  The overall
transformation in the animal brain has two steps. The
first step involves obtaining a cue-based representation,
called “feature space”, of the experimental surface. The
second step is the mapping of the “feature space” into
the 2-dimensional place cell sheet using. a parallel co-
ordinate representation system.

The ‘theory of place cell computational system
proposed is represented in the flow chart in figure 4.
The left hand column represents the theoretical steps
and examples corresponding to each step are shown on
the right. The overall problem is cast as a geometric
problem of mapping from the 2-dimensional space to the
N-dimensional space, i.e., R? to RN. Appropriate features
from cues are extracted and used in representing the
surface. The choice of features defines the
transformation rule used. The corerstone of the place
cell system is the representation scheme. We propose
the parallel co-ordinate system. Its ability to explain
observed physiological data and many desirable
properties such as avoidance of dimensionality problems
and graceful degradation of stored information will be
discussed below. The right hand column of the flowchart
shows examples of the blocks in the left hand column.
The animal is at point P. The features, f are any
appropriate features derived from the cues (distances to
the cues, for example). Mathematically, f(P): R? — R"
corresponds to the feature transformation rule. In the
parallel co-ordinate system, the line segments represent
the point, P.

3. FEATURE TRANSFORMATION

In our analysis, the animal can be at any point on
the 2-dimensional space within the boundary (called
“experimental surface”) shown in figure 5. The x-y co-
ordinate system to identify any point is shown as well as
the cues on the periphery and their x-y co-ordinates as
Cue i (x, y). There is significant amount of evidence
that the animal uses information derived from the cues to
locate itself in space. What type of information is
derived is a matter of debate ~nd there are various
speculations in the literature ¥%.  We have decided, for
this preliminary study, to use 2 feature sets; distance and
angle features.
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(i) Distance Features. The “distances-to-the-cues
features are one of the most direct and simple
representations that can be studied. Even though
distances may not be the features actually used by the
animal, analysis using distances ‘is very instructive
because of its simplicity. Any point, P can be defined as
a vector with three elements in the cue-co-ordinate
system, i.e., P = (r,, 1, I, where r, the distance to Cue
i, is a real, non-negative number.

Considering figure 5, assume, without loss of
generality, that the x and y axes are so located that Cue
1 is at (x, 0) and Cue 3 is at (-x,, 0). Cue 2 is at (X,
y,). Using the distances to the three cues from any
point, P(x, y), we can write P (x,y) =P (e

= 2 2 2w
where r1—i\/xo+x + Y2 = 2XX

=t \[(x =X+ (y - y)

— 2 2 2
ra_i\ﬁ<0+x + Y% — 2x.X
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In figure 6, we see the experimental surface mapped
into the feature space. The surface is curved. The
consequence of the curvature is that the notion of
“neighborhood” becomes different in the experimental
surface and feature surface, i.e., two points next to each
other in the feature space may correspond to two points
far apart on the experimental surface. In this example
where the surface in the feature space is highly warped,
such non-linearity is very large. Two points on either
side of a deep fold in the feature space will be much
farther apart on the experimental surface. Different cue
configurations will produce different amounts of warping
of the surface in the feature space.

(i) Angle Features : Using other information from the
cues, we can attempt to see which is most suggestive of
the observed physiological non-linearities. A second
attempt was made using angles between cues as the
features as shown in figure 7, where

2
R Pyt B+ Py

L 265, )
I #, 4+ Py + By
2~ 2r,r,
a, = 2 - (a, + a,)

are the angle features. Here, r, r, and r, are distances
to the cues as in figure 5 and r,, and r,, are the
distances between cues 1-2 and 2-3, respectively.

The feature space corresponding to the experimental
surface is shown in figure 8. As can be seen, the
feature space is not very warped and the
correspondence of neighborhoods will not be very non-
linear in this case. Comparison of feature surfaces for
distances and angles in figures 6 and 8, respectively,
reveals their strikingly different properties. In figure 6,
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Figure 7. : Experimental surface; angle features. x, = 1;
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due to significant non-linearity of the surface, two points
close by will be far apart on the experimental surface.

It is to be noted that the choice of the features
actually used by the animal is impossible to
determine with this analysis. What it allows us to do is
to study all the properties of the corresponding
transformations and predict place cell recording events
which can then be tested in actual animal experiments.
The transformation and the corresponding feature set
that best predicted the recorded place cell firing for
locations on the experimental surface should be selected
as the one used by the animal.

4. PARALLEL CO-ORDINATE REPRESENTATION

The experimental surface that the animal is exposed
to can contain more than 2 or 3 cues. From each of the
large number of cues, more than one feature can be
extracted.  Representation of these large number of
features (say, equal to N) becomes exceedingly difficult if
we insist that each feature be represented along
orthogonal axes. Not only is this N-dimensional space
hard to visualize, but also the more pertinent question of
how they may be represented in a 3-dimensional (or 4
using time as an axis) brain becomes impossible to
answer. Indeed, it could be argued that current theories
136531 consider only two or three features because of this
“demon of dimensionality”.

The use of a parallel co-ordinate system © is best
explained by the example in figure 9. Suppose that the
animal is on a rectangular experimental surface with
three cues as shown in figure 9(a). The numerical
values shown are examples of lengths. The point, P can
be represented either in x-y co-ordinates, P(x,y) = P(1,3),
or by features assumed here to be distances to the
cues, P(r.r,r,) = P(3,2,5). In figure 9(bj and (d), we
show the orthogonal co-ordinate representation and in (c)
and (e), the parallel co-ordinate representation. Another
categorization is that figure 9(b) and (c) show the
cartesian space where any point is represented by its
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Figure 8 : Feature space for angle features
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Figure 9 : Experimental surface and various representations of
a point, P

Figure 10 : Parallel co-ordinate representation of features

(x,y) co-ordinates whereas (d) and (e) show the feature
space where any point is represented by its features, in
this case distances to the three cues. All the four
representations in figures 9(b), (c), (d) and (e) are
completely equivalent.

We propose that any large number, N, of features
extracted from the cues in the experimental surface can
be represented in a parallel co-ordinate system. In
parallel co-ordinates, we will have N vertical axes and
the point, P, will be a sequence of line segments or what
we call a “trace”, as shown in the figures 4 and 9(e).
Such a sequence of line segments is very reminiscent of
an “engram”. What we propose is that, in the
traces code the Ilocation

hippocampus, such

information in terms of features derived from the
cues.

When we have N features based on the cues to
represent a point on the experimental surface, we adopt
the parallel co-ordinate representation as shown in figure
10, which is a generalization of figure 9(e). The
magnitude of each feature is represented by M cells, C,
to C,, arranged along axes, L, to L, in such a way that
for a larger magnitude of the feature, a cell higher up will
be active. The foci of activity, or the active cells, are
indicated by circles around cells. These cells may or
may not be interconnected as shown by the dotted lines.
Based on such a representation, we identify the following
desirable features: (i) “Demon of Dimensionality”- we
are no longer constrained to represent locations with two
or three features. As is most often the case, there can
be a large number of features available in the
experimental region and all N of them can be
represented on the N parallel axes, L, to L,; (ii) Storage
Capacity:- we consider a small finite number of cells,
equal to N*M. In the parallel co-ordinate representation,
each piece of information is stored as a sequence, or
trace of active cells. The same cells could participate
in many traces. Hence, the total amount of storage of
information is equal to MN. If N = 10 and M = 50, the
total storage = 50'° = 10, a very large number. If
pieces of information were generated every microsecond,
such a system can store all the information generated in
a 100-year life span (a total of about 10'® pieces of
information); and (iii) “Trace” Storage:- the use of many
features represented on many axes provides redundancy
in the representation of a location using N features. The
loss of a few cells will retain that representation, giving
rise to graceful degradation of specificity rather than
catastrophic loss. If the active cells are interconnected,
activation of a few cells will activate the complete trace.

We propose that the anatomical basis of the parallel
co-ordinate representation resides in the lamellar
structures of the hippocampus. The tightly coupled,
transverse organization of interconnections in each
lamella is suggestive of the -parallel co-ordinate axes [l
This organization is reminiscent of “functional columns” in
the neocortex. Since feature function magnitudes are
coded along the columns here, we will call them “feature
columns”. The position of CA3 pyramidal cells codes the
magnitude of the feature function.

Our parallel co-ordinate scheme seems to satisfy
most of the reported place cell data regarding
representation in the hippocampus: (i) The primary
experimental observation is that place cells respond to
location ¥ based on cue-derived information. Clearly,
our hypothesis that active cells code feature functions is
consistent with this observation. (ii) It is seen that same
cell may have fields in more than one environment (12,
Referring to figure 10, it can be seen that an active cell
may be part of more than one trace and hence may
code a location in more than one environment. (iii)
There is a certain discontinuity in the mapping in that
nearby cells do not correspond to nearby place fields.
This is consistent with our model in that two nearby
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active cells may be part of two different traces. For
example, in figure 10, consider axes, L, and L,. The two
active cells shown correspond to a point, P, close to
Cue2 and slightly away from Cuel, if distances to the
cues are assumed to be the features. Now consider a
new trace where the lowest cell on L, and the highest
cell on L, are active. This point, P, is close to Cuel but
far from Cue2. Hence, points, P, and P, are far apart
on the experimental surface, whereas active cells on L;
are close to each other. (iv) Removal of some
redundant cues do not affect the place cell activity, as
shown by removal of two out of four cues ©2. Again,
considering the trace shown in figure 9, if we are
monitoring the active cell on L,, even if some other cues
are removed, the cell on L, will be active if the
corresponding cue is not removed.

To summarize, we take a unique geometric point of
view in analyzing the place cell experimental
observations.  This leads us to a parallel co-ordinate
representation system within the hippocampus. The
“neighborhood” problem and  representation using a
large number of features which none of the current
theories can account for are accommodated naturally
within our parallel co-ordinate representation system.
From a theoretical neuroscience point of view, the notion
of a non-orthogonal representation system will permit a
new approach to the study of neural representation
where the architectonics will determine the type of the
axes of the representation system, the parallel axes
being just one example of a range of possibilities.

5. EXPERIMENTS TO TEST OUR MODEL

From a computational neuroscience point of view, for
our models to be useful, we have to test whether indeed
the computational steps proposed are carried out in the
animal brain. Our main assumption is that the lamellae
correspond to the parallel axes of the representation
system. Testing this assumption is confounded by the
lack of exact knowledge of the cue-derived features used
in the representation. A very decisive, albeit difficult
experiment can be designed to test the hypothesis that
location information is represented based on a parallel
co-ordinate system in the hippocampus. A second
experiment is also given to identify the feature functions
used. Purely for the purpose of exposition, we will
assume for the time being, that primary features such as
radial distances to the cues are used by the animal.

1) Parallel co-ordinate representation:- In the first
stage of the experiment, three rectangular cues (30°
sector angle) will be placed along the experimental
chamber wall at 3 o'clock, 10 o'clock and 7 o’clock
positions. A linear array of electrodes ['*, spaced 1 mm
apart will be used in these experiments. The electrode
will be stereotactically implanted, longitudinally in the
hippocampus. Alternatively, three separate tungsten
microelectrodes can be implanted independently using
stereotactic procedures. The locations are such that the
three electrodes record from three adjacent lamellae in
the CA3 area. During training of the rat, the electrode
position can be adjusted so that at least two place cells
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being recorded from will have the same place field. From
figure 10, it can be seen that this corresponds to
monitoring one trace.

When stable recordings are obtained, we add a 4th
rectangular cue at the 1 o'clock position. This is the 2nd
stage of the experiment. Based on our assumption that
the radial distances to the cues are the features used by
the animal, the introduction of the 4th cue should not
disturb the representation of the first two cues along two
adjacent lamellae in the 1st stage. Following retraining,
recordings under test conditions will be performed again.
If our hypothesis is tenable, the firing of the first two
place cells should remain unchanged.

2) Feature function selection:- This is an extremely
important aspect since if the feature functions used by
the animal become known, the accuracy of the proposed
representation can be tested conclusively.

The experimental arrangement will be similar to the
earlier one using three cues. In addition, a second
linear array electrode such that the two electrodes are
parallel will be used (figure 11(a)). From an introductory
consideration of parallel co-ordinates, it can be seen that
two parallel links between two axes correspond to two
points on a line of slope equal to +1 in orthogonal
co-ordinates. If the two parallel electrodes are not
perpendicular to the lamellar axes (horizontal in figure
11(a)), it means that the line does not pass through the
origin but the line will still have a slope equal to +1.

y
q L az X
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Figure 11 : Two locations, p and q, in
a) parallel co-ordinate representation, b) feature space and
¢) on the experimental surface '

In figure 11(a), we show the two electrodes
(horizontal lines) measuring from two lamellae, marked a,
and a,. If we assume that the features used are the two
angles between the three cues (as in figure 7), figure
11(b) shows the feature space for the two-angle case.
This is similar to figure 8 which was for three angles.
Because of the warping of the feature space, the two
place fields on the experimental surface corresponding to
the two place cells monitored may be found centered at
p and g as shown in figure 11(c). The need to analyze
the feature space is now clear because in its absence
we would not be able to predict the positions of the
place fields on the experimental space correctly.

During the experiments, when stable firings from all
4 recording sites are obtained, we will test one feature
space at a time from the array of solutions we have




previously developed. It is to be noted that for the same
place cells monitored, place fields will be different for
different feature functions. The procedure to test which
features are being used by the animal is as follows:

() Mark the centers of place fields on the
experimental surface (as in figure 11(c)) corresponding to
active traces p and q.

(i) Consider one type of feature function at a time,
say angle features. Find the angles between cues at
points, p and q on the experimental surface (from figure
11(c)).

(iii) On the feature space map for angles previously
developed, mark the two points corresponding to the two
angles obtained in step (i) above (as in figure 11(b)).

(iv) If angle features are indeed being used by the
animal, the two points on the feature space map must lie
on a straight line with slope equal to +1 as shown in
figure 11(b). This is so because points on a line with
slope equal to +1 in orthogonal co-ordinates correspond
to two parallel line segments in parallel co-ordinates (as
in figure 11(a)). In general, the line of slope equal to +1
on which the two points, p and g, lie in the feature
space need not pass through the origin, as already
mentioned.

If the line connecting the two points in figure 11(b)
does not have a slope equal to +1, the cue-derived
features used by the animal are not the angles between
the cues. The procedure described above can then be
iterated for each feature function for which the feature
space has been determined, including new feature
functions or feature function combinations.

6. DISCUSSION

Our attempts to model the hippocampal place cell
phenomenon provide an opportunity to investigate the
various tools and procedures used in the computational
neuroscience field. Artificial neural networks are perhaps
the best known tool emerging from the research activities
in computational neuroscience and related fields.
However, its utility in brain modeling may be limited. As
we saw in the case of HPC modeling, ANNs can
simulate the phenomenon in its essential details but
inspection of hidden layers and nodes or connection
weights is not likely to lead directly to testable
hypotheses. In our computational model of the HPC
phenomenon on the other hand, we took an approach
more consistent with the tenets of computational
neuroscience. We discussed the overall transformation
and representation issues at a computational theory
level. Our choices at this level were constrained by the
implementation (hardware) details known about the
hippocampal anatomy. Our model does not address the
algorithmic level in detail at this stage of its development.
In any case, the success of this model as being
neurobiologically useful can be declared only by
conducting the proposed (or similar) animal experiments.

As we had mentioned during the brief introduction to
computational neuroscience, even when the models do
not hold up in physiological experiments, they may have
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significant engineering value. In this case, the HPC
model of spatial cognitive processing may be used as a
model for machine algorithms. This may provide new
and robust methods of map building and navigation for
autonomous mobile vehicles when position information is
not externally supplied. In the area of map building and
navigation of mobile vehicles, Kuipers and Levitt [
address many of the issues that parallel the HPC
phenomenon. The point has been made (3] that in order
to learn the structure of large-scale space, the observer

. has to build a cognitive map by interacting with the

environment. This involves sensing cues in the
environment and observing the effects of moving in this
space. As is evident, this is similar to the animal
developing the “place cell map” of the environment by
moving and observing the environment. Once the
observer has a cognitve map of the environment,
navigation is possible by creating and executing a plan
to travel from one place to another. The traditional
methods & © do not build maps from local observations
but instead rely on non-local information such as
preexisting ~maps, active landmark  beacons  or
geolocating satellites. Navigation is performed by inertial
or dead-reckoning schemes © which can accumulate
substantial position errors. In general, accurate
measurements of sensor data and movement parameters
are essential to the success of the traditional methods of
map building and navigation. Methods based on a four-
level semantic hierarchy ¥ and occupancy grid ©® have
been proposed for robust spatial information processing.
In contrast to these methods, we could base a system
on the hippocampal place cell phenomenon to develop a
robust map building and navigation method (8. 52l for
mobile vehicles.
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