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ABSTRACT

A new method to estimate the energy distribution over the time-frequency plane of time-varying
stochastic signals is presented. A state space modeling approach is used to represent the signal.
A Kalman-smoothing algorithm is used to estimate the states from which the so-called “Kalman-
smoothed time frequency distribution (KS-TFD)” is obtained. The KS-TFD estimate is positive,
has good cross-term properties and high temporal resolution. The Kalman smoother-based
estimates are optimal in the mean square sense and therefore the KS-TFD estimate has excellent
noise performance. We demonstrate the “localizing” property of KS-TFD using deterministic
signals such as impulses and Gabor logons. Minimum interference is seen with multi component
signals. For Gabor logons buried in white noise at various signal-to-noise ratios, we show the
excellent performance of the KS-TFD estimate in comparison to the non-causal spectrogram
using quantitative performance indices.
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2. INTRODUCTION

The methods of time frequency distributions (TFDs) for nonstationary signal analysis have
seen significant amount of theoretical development in recent years >’ . The methods of TFD
have shown considerable promise in many application areas also* . However, it is fair to say that
the development of a comprehensive and coherent theory of time frequency analysis for random .
signals and its application to the analysis of random signals or deterministic signals in the presence -
of random noise has not been forthcoming * .

In this article, we propose a linear, time-varying, stochastic state-space model for a
discrete-time signal. The state-space model is chosen in such a fashion that the estimation of the
TFD from the time-varying states of the model is straight-forward. The states of the model can
be efficiently estimated by the Kalman filtering and Kalman smoothing algorithms. The states so
estimated are the time-varying discrete Fourier transform coefficients. The magnitude-squared
time-varying states are called “the Kalman-smoothed time frequency distribution (KS-TFD)”.
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We test the properties of the KS-TFD with a variety of deterministic signals as well as
signals in the presence of white noise. Comparisons are made to Wigner distribution and the non-
' causal spectrogram which demonstrate the ability of KS-TFD to perform in low signal-to-noise

ratio situations.

3. METHOD

Consider a general state space model of a time-varying stochastic signal, y(n), as given

below.
i X(n+1) = 4 X(n) + w(n) )
f A = 6L X(n) + e(n) @

For arbitrary choice of the matrix, A,, and the vector, ¢,, equations (1) and (2) are
together sometimes referred to as a time-variable parameter (TVP) model of a stochastic time
series *. We define X(n) as follows and make the following special choice for the vector, ¢,

L) LR o
) = 0 . . X . X000 ¢, = iML L eHM (3)
In the noise-free observation case, y(n) can be written as follows.
¥ 1Y e
) =@y Xm) = =), e X(n) @)
l M

' Equation (4) can be seen to be the (inverse of the) Goertzel algorithm’ where X, (n)|..,,is
jthe k* coefficient of the M-point DFT of the finite-duration sequence, y(n), 0< n < M-1) or X(n)
is the vector of all M-point DFT coefficients of {y(n-M+1), . . . ., y(n)}.

An alternate way to consider equation (4) is by comparison with the Cramer spectral
representation when y(n) is restricted to being wide-sense stationary *° . The Cramer
representation of y(n) can be written as follows.

1 p wn '
A = — f e™"dZ(w) ()

SPIE Vol. 2846/ 165




The increment process {dZ(w)} has the properties that its energy at different frequencies
is uncorrelated and that the expected value of |dZ(w)[? defines the spectrum, S (w)dw. Analogous
to [dZ(w)[%, for the nonstationary case in equation (4), we can define a time-varying spectrum
based on X(n). We proceed as follows.

Assume that in equations (1) and (2), e(n) and w(n) are zero-mean Gaussian white noise
sequences such that E[e(i) w(j)] = 0 for all i and j and the initial “state”, X(0) is independent of
e(1) and w(j). In the case where N samples of y(n) are available, X(n), can be estimated by
Kalman filtering and smoothing algorithms to obtain X(nN) ¢! Specifically, given a noisy
observation, y(n), the Kalman smoother allows us to obtain the estimates, X(n[N), which are the
estimated DFT coefficients for the sample instant, n. The variations of the DFT coefficients over
time can be used to estimate the time-frequency distribution “* . Considering the individual
elements of the state vector, we define the Kalman-smoothed time-frequency distribution (KS-
TFD) as follows.

Slkn) = X(ANP  for n=12,. N: k=12, .M (6)

It can be shown that for the special choices of A, = I, the identity matrix and e(n)=01n
equations (1) and (2) and the state estimation algorithm as the Kalman filter algorithm instead of
the smoothing algorithm, the estimate in equation (6) reduces to the well-known spectrogram.
Therefore, the advantages of the KS-TFD estimate, Sks(k,n) over and above the spectrogram
stem from the use of the Kalman smoothing algorithm which allows for increased temporal
localization, the inclusion of e(n) in equation (2) which permits the estimation of TFD of signals in
the presence of noise and the appropriate choice of A, to model the rapid variations in the spectral
content. In the next section, we demonstrate the first two properties. Possible choices of A, and
their effects on the TFD estimate will be addressed in a later article.

4_SIMULATIONS

In the following tests, the evolution of the “state” vector, X(n), in equation (1) has been
modeled by a random-walk model with the choice of A, as the identity matrix. The so-called
“time-variable parameter” (TVP) algorithm of Young® was used to obtain the estimates of the .
states. The prediction, correction and fixed-interval smoothing'® algorithms are given below. The-
variables in the algorithm are as follows: y(n) - observation scalar; A, - state transition matrix;
Q(n) - process noise correlation matrix; ,> - measurement noise variance; Q,(n) = Q(n)/c%;

X(n[n— 1) - estimate of predicted state at n; X(n) - estimate of filtered state at n; «(n) -

mnovations scalar; ¢, - measurement vector; P(n[n-1) - correlation matrix of state prediction
erTor.
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Prediction:
Xnin-1) = 4, Zn-1)
B(nn-1) = 4, B(n-1) 4, + 0.(n)

Correction:
a(n) = y(n)-b; X(nin-1)
B(m) = 1+, P(nn-1)0,

&) = X("l’"l)*‘ﬂ(nln—l)gﬂ
B(m)

B(n) = B(nn=1)-P(rin-1)$, &7 P(nin-1)—_
B()

Smoothing:

Ln-1) = 18,8 | [4] 26)-0, 54 4,801
L) = 4. |1+ 0,00) Lin- 1)

Initialization:
Q(n)

2
(o)

€

£0)=0; PO)=cl; LM =0; Q)= =l

Here, ¢, r = small positive constants and N is the total number of data points.

The following simulations were conducted -

Test(1): impulse signal, i.e., y(n)y=0(n-50);
Test (2): sum of 2 Gabor logons, s(n)=s,(n)+s,(n) where for k=1,2 and logon location
parameters, (n,,w,), s,(n) is defined as follows.

34 ~Ln-ny?
e
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Test (3): x(n), signal in additive white Gaussian noise, i.e., sum 2 Gabor logon, s;(n) at a new
location, (n;,w;) and white noise, w(n), with various signal-to-noise ratios.

Qualitative Analysis:

The results are shown in figures 1 to 3. All the figures show the time series on the top
row and the mesh plot of Ss(k,n) immediately below. In figure 3, the bottom row shows the
non-causal spectrogram of x(n) for a rectangular window centered at n. The frequency axis spans
the 0 to 7 range of the normalized discrete frequency. In figure 3, the location of the single Gabor
logon is in the center of the time-frequency plane. Some qualitative features of these plots are
discussed first. - '

The “localization” property of the KS-TFD estimate is demonstrated in figure 1. The KS-
TFD estimate produces a clear broad-band peak at n=50. In comparison, the spectrogram that
uses a rectangular window centered at n will have a step that extends from n=50-(M/2) to
50-++(M/2) where M is the window length with no clear peak (choices of window other than
rectangular can be found in specific situations that have better localization property).

In figure 2, the KS-TFD estimate displays some of the desirable properties of a TFD
estimate such as positivity and minimum cross-terms. We will compare the KS-TFD estimate to
the Wigner distribution of s,(n), W, (n,w).

-—%(u-nk)2

Winw) =e° g v

Consider the “ideal” TFD estimate as the linear superposition of the two Wigner distributions,
ie., W(nw) = W (n,w) + W,(n,w), thereby eliminating the cross-terms. Obviously, W(n,w) is an
“ideal” estimate only in the case of logons well-separated in the time-frequency domain. The
mean-squared error between W(n,w) and the KS-TFD estimate normalized by the variance of
W(n,w) was found to be equal to 0.0019. Such a low normalized mean-squared error (=0.2%)
implies that the KS-TFD estimate has the properties of minimum time-bandwidth product and
positivity of Wigner distribution for one Gabor logon and lack of cross-terms of W(n,w) as
defined above.

The qualitative effect of added white noise at 0db SNR can be seen in the plots in figure 3.
The “ideal” TFD estimate of x(n) will be the Wigner distribution of a single Gabor logon similar
to the ones in figure 2, but in this case located at the center of the time-frequency plane. The
Sks(k,n) estimate in middle row is remarkably similar to this ideal result, showing qualitatively that
our Kalman filter formulation allows for optimal estimation in the presence of additive noise. Asa
comparison to a traditional method, we chose the non-causal spectrogram since it also results in
non-negative distributions, as shown in the bottom row. Clearly, the Sgs(k,n) estimate is much
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superior to the spectrogram.

’ A clearer picture of the comparisons among the Wigner distribution, KS-TFD estimate
and non-causal spectrogram of the single Gabor logon can be obtained in we consider the
“maximal energy” slice (which in this case is the 5th frequency slice) of the TFD of a single
realization. In figure 4, the visual comparison among these 3 plots show two desirable properties
of the KS-TFD estimate over the spectrogram. The first feature that can be noted is that the KS-
TFD estimate (dashed line) is “closer” to the theoretical (solid line) than the spectrogram estimate
(dash-dot line). (It should be pointed out that the “narrower” appearence of the spectrogram for
this realization is not a consistent observation across the ensemble). In addition, the KS-TFD
estimate is seen to be “smoother” than the spectrogram estimate with fewer “false” peaks. In the
following section, we develop a performance index that captures both these properties and
compare the KS-TFD and the spectrogram estimates for various signal-to-noise ratios.

Quantitative Analvsis:

It is customary to utilize smoothness functionals in developing desirable performance
criteria to be minimized so as to find an approximating function, F [ ], relating noisy data, x; to
desired data, d; . A typical smoothness functional'® is of the following form where the first term is
the mean squared error and the second term is a smoothness functional which utilizes an nth-order

differential operaror.

iﬂ,i][”d,
él‘

A - ‘lvi (Flz] -d +f

i=]

Similar to the smoothness functional above, we use a performance index which is the sum
of mean-squared error and smoothness measure based on 1st and 2nd derivatives, averaged over
the entire time-frequency plane.

I = MSETW(kn).S (k)] + f MSISAI(K)] + MS[Sd2(R)]
k=1

Here, Sd1(k)=Sgs(k,n)-Sgs(k,n-1) and Sd2(ky==Sd1(k,n)-Sd1(k,n-1); the operators, MSE[ ]
calculates the mean-squared error between the arguments and MS[ ] calculates the mean-squared
value; M is the total number of frequency samples. The normalized performance index, NI, is
obtained by normalizing the terms of performance index, I, by the variance and mean-squared
value of the 1st and 2nd differences of W(k,n). From the definition, it can be seen that smaller
values of NI for a certain estimate indicate better performance in the sense that the estimate is
“closer” to the theoretical TFD and that the estimate is “smoother”.
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The normalized performance index, NI, was calculated for 30 independent noise
realizations at +3db, Odb and -3db SNRs. The average values of NI and the ratios of average NI
of non-causal spectrogram to KS-TFD for the different SNRs are given in Table 1.

Table 1. Ensemble Performance Comparison of KS-TFD and non-causal spectrogram (*NCS)

SNR Estimation Method Average NI Ratio
KS-TFD 1.309

+3db 6.3
*NCS 8.2501
KS-TFD 1.8162

0db 7.15
NCS 12.9841
KS-T¥D 3.8266

-3db 8.97
NCS 34.3225

5. DISCUSSION

The ratio of average normalized performance index given in the last column of Table 1 is
plotted in figure 5. The ratios can be interpreted to mean, for example at a 0db signal-to-noise
ratio, the KS-TFD is over 7 times better (in the sense of being closer to the true TFD and
smoother) than the non-causal spectrogram. In figure 5, it can also be seen that the superiority in
performance of KS-TFD increases as signal-to-noise ratio decreases. This is consistent with our
expectations since the spectrogram has no special ability to handle noise whereas the Kalman filter
algorithm is optimal in the estimation of states in the presence of observation noise.

Based on the qualitative and quantitative analyses above, some general conclusions can be
drawn about the properties of the KS-TFD estimate of time frequency distribution of signals in
the presence of noise. The KS-TFD estimate is positive, has good cross-term properties and has
high temporal resolution. A central feature of our method is the special choice of the
“observation vector”, ¢,, which is pre-determined. The pre-determination of vector, ¢,, assures
that the Kalman smoother-based estimates are optimal. Therefore, the KS-TFD estimate will
have the best possible noise performance.

It should be pointed out that one may observe equivalent results using other approaches,
but the KS-TFD viewpoint provides a unifying framework. An example of this was pointed out in
section 3 where the spectrogram approach can be seen as a special case of the KS-TFD method.

170/ SPIE Vol. 2346




It should be noted that many alternate Kalman smoothing algorithms are available, some of which
may have better performance than the one we have presented here.

The Kalman-smoothed time frequency distribution provides an effective method to model
the energy distribution over the time-frequency plane of time-varying stochastic signals using the
state space formulation. The additive combination of signal and white noise is only a basic
application of this method - different formulations of the state evolution and observation noise
will extend the applicability to cases such as signal in colored noise as well as non-stationary
stochastic signals.
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Figure 1. KS-TFD of an impulse Figure 2. KS-TFD of 2 Gabor-logons
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Figure 3. One Gabor logon, located at the center of the time-frequency plane, in white
noise at 0db SNR; KS-TFD (middle row) and non-causal spectrogram (bottom row).
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