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ABSTRACT

A new theory of random fields based on the concept of local averaging was developed in the 80's where the
second-order properties of the random fields are characterized by the variance function. Certain asymptotic
properties of the variance function lead to the definition of a scalar called the “scale of fluctuation”, which has many
interesting properties. A non-parametric method of estimating instantaneous scale of fluctuation is developed using
the time-varying model-based time-frequency distribution.. A wide range of random processes can be modeled by
appropriate state-space models with white process noise. For properly defined state transition matrices and
observation vectors, the states estimated using Kalman filtering or smoothing algorithms provide the estimated time-
frequency distribution (Kalman-TFD). Using Kalman-TFD, the instantaneous scale of fluctuation is estimated.
Performance of this estimator is compared to other instantaneous and block methods using the coefficient of
variation of the estimators. The Kalman-TFD-based scale of fluctuation estimator has a coefficient of variation of
6% where 5s other methods yield coefficients of variation greater than 35%. The instantaneous scale of fluctuation
quantifies the temporal variability of the underlying system and possible resultant limit-cycle oscillations. Tests with
real vibration data from machine tools before and during chatter show that the estimated instantaneous scale of
fluctuation may permit on-line prediction of chatter development many hundreds of milliseconds in advance. To
explain the behavior of the estimated instantaneous scale of fluctuation during pre-chatter period, detailed
simulations were undertaken which revealed that the random process during pre-chatter condition goes through an
increase in “degrees-of-freedom” or its unit standard deviation contour volume.

Keywords: random field theory, scale of fluctuation, time frequency dismibution, Kalman filtering, machine tool
monitoring, chatter phenomenon.
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1. INTRODUCTION

Vanmarcke [10] introduced a comprehensive theory of random fields which extends very elegantly to multi-
dimensional cases. His “random field theory of local averages” captures the effect that local averaging has on a
homogeneous random field. The quantification of the effects of local averaging leads to a function which
characterizes the second-order properties of the random field called the “variance function”. A scalar called the
“scale of fluctuation” derived from the variance function has many nice interpretations, some historic and some new.
The scale of fluctuation can be considered to be similar to other scalars derived from multidimensional probability
density functions such as correlation or Shannon entropy. The information that the scale of fluctuation provides is
different from other familiar scalars such as correlation or entropy; in the case of a time series, the scale of
fluctuation is a measure of the “time scale” of a random process over which the correlation structure of that random

process is characterized [9, 10].

In this paper, it is shown that in the case of Gaussian random process, an invariance property of the scale of
fluctuation captures the “volume” characterizing the joint probability density function which may have significant
practical applications. A simulated data example is discussed later to develop the ideas behind the invariance
property. An important notion of time-varying scale of fluctuation is introduced and a new estimation method using
Kalman filtering is developed. Performancs of this estimator is compared to spectrogram as well as block methods
such as those based on AR modeling and periodogram. Analysis of simulated machine-tool vibration data provide
the rationale for the use of time-varying scale of fluctuation for the prediction of machine-tool chamter. The paper
concludes with preliminary results from the practical application of time-varying scale of fluctuation for the
prediction of machine-tool chatter.

2. THEORY OVERVIEW

Consider a zero-mean, stationary, real random process, X(t) with a variance of ¢° and the following
definitions of its second-order properties.

B(7) = E[X(NX(1+7)]

1) Correlation Function:

p() = £
-

2) Normalized Correlation Function:

3) Spectral Density Function (s.d.f.): 1 =
S(w) = e B(t)e 7*dt
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4) One-sided s.d.f.:
G(w) = 285w) ; w20

5) Normalized s.d.f (unit area): glw) = iz G(w)
(0]

The concept of variance function is developed by considering the following moving average process, X(t).

For larger averaging window, T, the variance, o1, of the corresponding moving average process will be smaller
than ¢°. The variance function is defined as follows.
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y(T) = o/ o

! ' Vanmarcke showed that as T increases, y(T), has a characteristic shape and that the limiting value of Ty(T) Is very
B meaningful. In fact, the limit is called the “scale of fluctuation, 8 and the limit exists [10] if the slope of the
normalized spectral density function at w=0 is zero.

6 = 2™ TY(D)
(D

[p(m)dr = 7g(0)

From equation (1), 6 is the “area” under the normalized correlation function or proportional to the zero-frequency
ordinate of the normalized spectral density function. Many interpretations for 8 exist and are variously known as
“characteristic length”, “correlation length” or “duration of persistence of trends”. For a real-valued, discrete-time
autoregressive random process, X(n), of order P, using results developed by Vanmarcke [10], the scale of
fluctuation, 8, can be obtained as follows.
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Here, H(w) is the ansfer function of the linear-time invariant system relating white noise process to the AR(P)
process, 0., is the scale of fluctuation of the white noise process (6., = 1), 0.’ is the variance of the white noise
process (0,2 = 1), 0, is the variance of the AR(P) process and {a}, i=1 to P are the AR coefficients.

To develop a better understanding of 6, consider two discrete-time AR(2) processes with model equations
as follows - (1)AR,(2): x,(n) = 1.8x,(n-1) - 0.82 x,(n-2) + w,(n) and (2) AR,(2): x;(n) = 0.6x,(n-1) - 0.2 x4(n-2) +
w,(n). Typical 100-point data sequences are shown in figure 1. Using equation (2), the scale of fluctuation can be
calculated knowing that [4],
y _ l+a 1
= 3) -
I-a, (1+a)?-a;

where a,, a, are the AR coefficients {-1.8, 0.82} and {-0.6, 0.2}. For AR,(2), 8, = 17.9 and for AR,(2), 6,=2. The
interpretations of 6 as “correlation length” or “duration of persistence of ends” are clear by considering the plots in
figure 1. From the plotted data, the AR,(2) process can be seen to be narrow-band with a correlation function that
will presist for a long time (8, = 17.9) whereas the AR,(2) process has a correlation function that dies out rapidly (8,
=2); '

3. INVARIANCE PROPERTY

For a real-valued AR(2) process, consider the expression for 6. If the pole positions corresponding to real
coefficient {a,, a.} are (x = jy), the expression for 6 can be written as follows,
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The “8 = 1" constant-0 contour is plotted in figure 2(a). It shows the plot in the first quadrant of the z-plane with a
semi-cirle for comparison. By setting 6 = 1 in equation (4), we obtain the quartic equation, (x* + y*) 2+ x* + y* - 2x
=0, shown in figure 2(a). For comparison, the circle shown in figure 2(a) has the quadratic equation, (x - A +y* =
(*4)%. If we consider the © = | contour approximately circular, in figure 2(b), we can see that constant-6 contours for
0 >1 are approximate circles of smaller diameter and with centers along the real axis closer to the unit circle. Any
pole pairs that lie on the same constant- contour will have different {a, , 2,} coefficients but the same 6. For
example, consider the two AR(2) processes marked on the =3 contour in figure 2 (only the pole in the first quadrant
is marked). The first process, AR,(2), has poles at (0.9 = j0.26) and the second process, ARg(2), has poles at (0.35 =
JO.17). The corresponding AR coefficients are {-1.8, 0.8776} and {-0.7, 0.154} respectively. Typical 100-point data
sequences are shown in figure 3. As is clear, AR,(2) and ARy(2) are very different processes with different
correlation functions (or spectral densities), yet the same 6. The significance of this invariance property will
become clearer when we consider its practical application in the case of machine-tool chatter signal analysis and
realted simulation studies.

At this time, it not clear what invariant physical property of the random process is being captured by the
scale of fluctuation. However, it is interesting to consider further the linear time invariant system in the modeling of
AR processes. In this simple, second order linear system case, we can compare the constant-8 contour to other
traditional contours such as constant-§ (damping ratio) and constant-w, (natural frequency) contours [3]. The
constant-§ contours are logarithmic spirals and the constant-w, contours are at right angles to the logarithmic spirals,
both distinctly different from the constant- contour. Our conjecture is that all Gaussian random processes that lie
on the constant-6 contour have similar unit-standard deviation contour volume. This possibilty will be explored
further for the case of simulated machine-tool chatter signal analysis.

4. TIME-VARYING “6” OF DISCRETE-TIME SIGNALS
By extending equation (1) using the time-varying normalized spectral density function, g(w,t), a time-
varying 6 can be defined as being proportional to the zero-frequency ordinate of the normalized time-varying
spectral density function, i.e., 8(t) = = g(0,t).
In recent years, significant advances have occured in the field time-varying spectra or “ﬁme-ﬁ’equency
distributions” [1]. The time-frequency distributions (TFDs) allows one to estimate the power spectral density as it
varies over time, primarily for deterministic signals. These concepts have been extended to random signals by the

development of time-varying model based TFD or “TVM-TFD” [6]. «

Consider a general state space model of a time-varying stochastic discrete-time signal, y(n), as given below.

X(n+1) = .ﬁa/_.\.f(rn)r *wn); X)) = () .. X0 .. X ] (52)

2% 2 T
=2 nk =2 n(M-1)
y(n) = (L,T,. X(n) + e(n); ¢, = A—IJI : @ ejM o ej M (3b)

For arbitrary choice of the matrix, A,, and the vector, ¢, equations (3a), (3b) is sometimes referred 10 as a
time-variable parameter (TVP) model of a stochastic time series (11]. Inthe noise-free observation case, y(n) can
be written as follows.
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Equation (6) can be seen to be the Goertzel algorithm [8] where X, (M) is the k* coefficient of the M-point
DFT of the finite-duration sequence {y(n), 0< n < (M-1)} and X(n) is the vector, elements of which are the M-point
DFT coefficients, X,(M), k=1 to M. To define a time-varying spectrum based on X(n), we proceed as follows.

In equation (5), assume that e(n) and w(n) are zero-mean Gaussian white noise sequences such that E[e(k)
w(l)] = 0 for all k and | and the initial “state” X(0) is independent of e(k) and w(l). In the case where N samples of
v(n) are available, X(n) can be estimated by Kalman filtering algorithm [3, 11]. Specifically, given a noisy
observation, y(n), the Kalman filter computes estimates X(n) of the DFT coefficients at time n. The variations of the
DFT coefficients over time can be used to estimate the time-frequency diswibution [1]. We define the time-varying
model based time-frequency distribution (TVM-TFD) as

S(kn) = X (>  for nk=12,.N (7

The TVM-TFD, S(k,n), estimates the power spectral density at discrete frequency, k and discrete time, n.
Based on the TVM-TED, we define an estimate of the time-varying scale of fluctuation, T(n), as follows.

- S(0,n) )
™ = o ()

Here, r(m,n) is the instantaneous autocorrelation sequence and r(0,n) is the instantaneous mean-squared value of the
discrete-time random process, y(n). Note that the normalizing factor, =, does not appear in equation (8) because of
the definition of time-varying spectral density in equation (7).

5. PERFORMANCE COMPARISON OF ESTIMATORS

The performace of Kalman-TFD-based estimator of the scale of fluctuation as given in equation (8) is
compared to a spectrogram-based estimator (spectrogram replaces S(0,n) in equation 8) in figure 4. The T(n) was
estimated over ten 100-point segments and the average for each segment in shown in figure 4. As a performance
index, the coefficient of variation (standard deviation + mean) was calculated for the specrogram-based and
Kalman-TFD-based estimates. The coefficient of variations of 83.6% and 6.0% respectively were obtained which
shows the significant superiority of of the Kalman-TFD-based estimator. Additional comparisons were made to
“block” methods where 0 was repeatedly estimated over 100-point segments using the AR-model based method

given by equation 2) and periodograms. Vanmarcke [10] has also provided a theoretical estimate of the coefficient
of variation of the sample autocorrelation function-based estimate which can be used as the basis for all comparisons. -
The results are tabulated in Table 1. The superiority of the Kalman-TFD-based estimator of 6 is clearly evident.

Table 1. Comparison of Scale of Fluctuation Estimators

Estimator Type Coefficient of Variation

Kalman-TFD 6%

Instantaneous
) Spectrogram 84%

AR Model-based 80%
Block ]

Periodogram 35%
Theoretical Sample Correlation Function 115%
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6. TIME-VARYING “0” - SIMULATION STUDIES

The properties of the estimate of the time-varying scale of fluctuation, T(n), will closely resemble the
properties of the TVM-TFD [6]. The use of Kalman filtering for TVM-TFD assures optimality of estimates in the
mean-square sense which translates into good noise performance. The good localization and cross-term properties of
the TVM-TFD results in S(0,n) being a good time-varying estimate of the zero-frequency ordinate of the time-
varying spectral density function. In this section, we demonstrate some of these properties through simulartion
studies. The simulation data are chosen with the additional aim of providing a basis for the explanation of real data
tests to be undertaken in Section 7.

The pole positions of the three AR(2) processes are shown in figure 5. The processes are (1) AR,, with
poles at (0.6 = j0.095) and corresponding AR coefficients {-1.2,0.369}, (2) AR,, with poles at (0.6 = j0.46) and
corresponding AR coefficients {-1.2, 0.5716} and (3) AR;, with poles at (0.95 = j0.14) and corresponding AR
coefficients {-1.9, 0.9221}. The'0 of the three processes are calculated by equation(2) and marked on the constant-8
contours in figure 5. The 6 for AR,, 8, and AR,, 6; are equal (8, =6, = 7) whereas for AR,,8, =2. The figures 6
(a), (b) and ( ¢) show a realization of 1000 points each of the three time series as well as plots of the estimates of the
time-varying scale of fluctuation, T(n), for each time series. By visual inspection of the time series plots, it can be
seen that the time-domain (amplitudes) and frequency-domain (broad-band nature) features of AR, and AR, are very
similar and AR; is most dissimilar whereas T(n) of AR, and AR, are similar (estimate close to the theoretical value
of 7) and AR, is most dissimilar (estimate close to the theoretical value of 2). It can be observed that T(n) “zracks”
the theoretical 8 value for the three processes quite closely. The mean values of T(n) (shown by dotted horizontal
line) in figures (a), (b) and ( ¢) are 7.2, 2.2 and 6.6, showing good agreement with the theoretical 6 values.

Comparing figure 6 (a) and ( ¢), it is striking to note that whereas their 8 values are equal (= 7), the
appearence of the time series is quite different. The AR, series is over 5 times in amplitude compared to AR,. The
AR, series is also quite band-limited compared to the broad-band nature of AR, . Note that these features are
entirely consistent with the pole positions shown in figure 5 for these two processes. Conversely, from figure 6 (a)
and (b), it is striking to note that whereas their 6 values are different (7 and 2, respectively), the appearence of the
time series is quite similar. This leads to the conclusion that 8 captures some property of the random process
different from its first or second order statistical properties. In other words, even though the definition of 6 is based
on the autocorrelation or spectral density function, 6 may capture one (or some small set of) specific feature of the
joint probability density function. The intuition related to the real-data application to be discussed in Section 7 leads
to the possibility that the specific feature that 6 captures may be related to the volume of the unit standard deviation
contour of the joint probability density function. We explore this possibilty as follows.

Consider an n-dimensional random vector, y, representing a Gaussian discrete-time random process. The

* joint probability density function of y is given by the following equation.

1 1 Tl

) = ——exp -~ -wC - ‘

1 2 ®
27T ,Cv] 2 .

Here, p is the mean vector and C is the autocovariance matrix. For the zero-mean case, the unit standard deviation

(u.s.d.) contour is given by the equation, y'C''y = [ [see 2, for example]. In the 2-dimensional case, the equation is

that of an ellipse with the semi major and minor axes equal to the square roots of the eigenvalues of C, the

autocovariance matrix [2]. The volume, V, of the unit standard deviation contour (a hyper-ellipse) is given by the
following equation.where 1, is an eigenvalue of C and there are K significant eigenvalues.

K
vell 2,7 =D (10)
n=|
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In our simulation studies, the u.s.d. contour volumes were estimated for the three random processes from
each of their (100x100) averaged, normalized autocovariance matrices. In figure 7, the largest 50 eigenvalues in
descending order are plotted for AR, AR, and AR,. It can be seen that the number of significant eigenvalues are
different for each process. The selection of the number of significant eigenvalues is generally problematic. To aid in
the selection process, we proceeded as follows. For AR, and AR, in figure 7 (a) and (c), we calculated the “change
of slope” of the ordered eigenvalues to aid in the detection of the “knee” in the eigenvalue profiles. The largest
index for which the change of slope was greater that one was judged to be the location of the knee, provided that the
magnitude of the eigenvalue at the knee was significantly less (50% or less) than the first eigenvalue. The number of
significant eigenvalues (index number, K) was chosen as one index number less than the knee location. Such a
procedure yielded values of 7 and 6 for AR, and AR,. For AR, in figure 7 (b), a “knee” is not detectable based on
the above criterion; K was chosen as 25 at which a sudden change of the magnitude of the eigenvalue can be
detected. The u.s.d. contour volume of each joint probability density function is calculated using equation (10) where
n is replaced by K for that random process.

Table 2- Comparison of Unit Standard Deviation Contour Volume

AR Process ) K D -’
AR, 7 7 0.64x10°
AR, 2 25 0.65x10°
AR, 7 6 2.04x10°

The comparison in Table 2 shows that AR, and AR, have similar 6, “degrees of freedom” and volumes
whereas AR, has a volume 3 orders of magnitude larger. This observation justifies the conjucture that 8 may capture
a measure related to the volume of the unit standard deviation contour. The fact that small 6 implies large volume in
which the random process exists suggests an intuitively appealing explanation of the results of the real-data
application to be discussed in the next section.

7. AN APPLICATION OF TIME-VARYING “8”: PREDICTION OF MACHINE TOOL CHATTER

Machine tool chatter is a self-excited relative vibration between the work piece and the cutting tool
in common machining processes such as turning process on a lathe [7]. The presence and evolution of chatter can be
monitored by measuring the vibration signals from the cutting tool using appropriately placed accelerometers. Such
a signal is called the “chatter signal”. The chatter signal can be analyzed to discern the state of the machining
process and this information can be used to predict the possible future development of chatter.

In figure 8, the chatter signal and the corresponding estimates of the time-varying scale of fluctuation, T(n),
are shown. In figure 8(a), the condition of the machine is “normal operation”. It can be noticed that the time series
and T(n) are comparable to AR, in the simulation studies in Section 6 (compare figures 8(a) and 6(a)). In figure -
8(b), the first 300 milliseconds or so is the “pre-chatter” period and the rest is the “fully-developed chatter” period.
The “pre-chatter” period is comparable to figure 6(b) and “fully-developed chatter”, to figure 6( c).

The following features are important to note in figures 8(a) and 8(b). The amplitude scales for the chatter
signal are different; the amplitude in figure 8(a) during normal operation is of the same order as the amplitude of pre-
chatter signal in the interval from 0 to 250 msec in figure 8(b). In figure 8(a), the value of T(n) stays relatively stable
around 7. In figure 8(b), when chatter is fully developed after 450 msec, T(n) value is again approximately around 7.
Thus T(n) is relatively insensitive to operating conditions during normal operation and fully developed chatter. In
figure 8(a), the value of T(n) is significantly and consistently below 5 during pre-chatter condition. It can be
concluded that the value of T(n) staying below 3 is a predictor of chatter that develops fully after approximately 400
msec.

The reduction of the value of T(n) during pre-chatter period as a predictor of future chatter development
can be explained in the light of observations made in Section 6. The random process during pre-chatter condition
behaves similar to AR, in Section 6, which as shown in Table 2, goes through an increase in “degrees-of-freedom”




and its u.s.d. contour volume. This expansion of the machine system’s phase-space makes it vulnerable to getting
trapped in certain fundamental modes of the system which will result in energy build up in a narrow frequency range
and resultant nonlinear limit cycle type of oscillations characteristic of chater.

8. CONCLUSIONS

The invariance property of scale of fluctuation, 6, for certain class of random processes was introduced.
For second-order auto-regressive random processes, it was shown that constant-0 contours are approximately circles
with centers on the non-negative real axis with radius less than or equal to half. It should be noted that the invariance
property of 6 discussed in this article is distinct from a quantity Vanmarcke has defined as “invariant-6” of a random
process which is the product of the variance and the 8 of the random process [10]. It can also be seen that in the
second order system case, the contours of constant “invariant-6” is quite different from the approximately circular
constant 6 contours discussed in this article.

A Kalman filter based non-parametric method of estimating time-varying 6 was developed using the time-
varying model-based time-frequency distribution. Simulated data showed that 6 captures a very important invariant
property related to the unit-standard deviation contour volume of the joint probability density function of the
Gaussian random process. Tests with real vibration data from machine tools before and during chatter show that
estimated © may permit on-line prediction of chatter development many hundreds of milliseconds in advance.
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Figure 1. Typical realizations of time series
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Figure 2(b). Constant 8 contours; the two
AR(2) random processes, A and B, are
marked on the © = 3 contour.
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lines, are 7.2, 2.2 and 6.6 for AR,, AR, and AR; respectively.
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Figure 8. (a) Real data test during normal operation- NO CHATTER condition (note: chatter
signal amplitude scale different in (a) and (b)); (b) Real data test during various chatter conditions:

(1) pre-chatter from 0 to 250 msec; (2) chatter onset from 250 to 450 msec and (3) fully
developed chatter from 450 msec to 1 sec.
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